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Abstract. A spectral collocation method is used to obtain the solution to the Orr-Sommerfeld stability equation.
The accuracy of the method is established by comparing against well documented flows, such as the plane Poiseuille
and the Blasius Boundary layers.

The focus is then placed on the generalised Hiemenz flow, an exact solution to the Navier-Stokes equations
constituting the base flow at the leading edge of swept cylinders and aerofoils. The spanwise profile of this flow is
very similar to that of Blasius but, unlike the latter case, there is no rational approximation leading to the
Orr-Sommerfeld equation.

We will show that if, based on experimentally obtained intuition, a nonrational reduction of the full system of
linear stability equations is attempted and the resulting Orr-Sommerfeld equation is solved, the linear stability
critical Reynolds number is overestimated, as has indeed been done in the past.

However, as shown by recent Direct Numerical Simulation results, the frequency eigenspectrum of instability
waves may still be obtained through solution of the Orr-Sommerfeld equation. This fact lends some credibility to the
assumption under which the Orr-Sommerfeld equation is obtained insofar as the identification of the frequency
regime responsible for linear growth is concerned.

Finally, an argument is presented pointing towards potential directions in the ongoing research for explanation of
subcriticality in the leading edge boundary layer.

1. Introduction

The linear stability of a small class of problems of engineering significance may be studied by
solution of the Orr-Sommerfeld equation. Best known examples of these are the Blasius
Boundary layer and the plane Poiseuille flow. While the plane Poiseuille flow is strictly
parallel, in the former case a non-rational argument regarding parallel mean flow has to be
invoked, in order for the system of stability equations resulting from substitution of small
wave-like perturbations into the Navier-Stokes equations and linearisation about the Blasius
profile to be reducible to the Orr-Sommerfeld equation.

The flow at the attachment line forming near the leading edge of swept aerofoils and
cylinders, on the other hand, is attractive from a mathematical viewpoint for (at least) two
reasons. Firstly, this flow is an exact solution of the Navier-Stokes equations (Hiemenz [1],
Schlichting [2]). As a consequence no boundary layer assumption, based on the largeness of
Reynolds number, is required and, hence, the search for a critical Reynolds number of this
flow is based on a self-consistent theory. Further, the boundary layer set up at the
attachment line is strictly parallel, thus significantly simplifying the linear stability analysis
compared to the flat plate boundary layer, where the slow growth of the layer has to be
taken into account.

For more than a decade now, and stemming from the renewed efforts around Natural
Laminar Flow Control, a number of studies of the generalised Hiemenz flow have been
performed. Experimentally, Poll undertook detailed investigations [3]-[6] and proposed a
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critical Reynolds number value of R, - 235. Theoretically, Hall et al. [7] and Hall and Malik
[8] studied the linear and weakly nonlinear regimes by solution of the eigenvalue problem
and Direct Numerical Simulation (DNS). Spalart [9] performed a DNS of instability,
transition, turbulence and relaminarisation of this flow. Jim6nez et al. [10] also performed a
DNS of the linear and nonlinear regimes, while Theofilis [11, 12] studies the eigenvalue
problem and performed a DNS in the linear regime.

Despite this activity, open questions still remain, mainly revolving around the existence of
subcritical instability and the explanation of the origin of the phenomenon of 'leading edge
contamination', namely existence of turbulent flow at the attachment line itself at Reynolds
numbers well below critical limits established through linear and weakly nonlinear analyses.
In this work, however, we restrict ourselves in scope and, using recent DNS results, turn to
the possibility of studying, from an engineering viewpoint, the frequency eigenspectrum of
the flow under consideration by reduction of the full stability problem to the Orr-Sommer-
feld equation, which can be solved efficiently on a modest present day machine.

There is no rational argument which may lead to such a reduction. However, the
experimental observation that this flow is strictly parallel in the spanwise direction might,
conceivably, leave some room for questioning the necessity for extraction of physically
relevant information on the frequency eigenspectrum from solution of the full eigenvalue
problem or, ultimately, from DNS alone.

To address this question, we first solve the Orr-Sommerfeld equation by a spectral
decomposition of the perturbation quantities. Ever since its introduction in the early 70s,
albeit in a somewhat different form, this solution approach for the eigenvalue problem at
hand has been gaining ground compared to the more traditional shooting methods based on
finite-differences as will be discussed below. In §2 we present the Orr-Sommerfeld equation
and its solution alongside a number of validation results. In §3 the equations governing the
base flow and the linear stability of the attachment-line boundary layer are presented. The
Orr-Sommerfeld equation of this problem is deduced and solved in a region of interesting
wave- and Reynolds numbers. Results are compared with past studies, notably with the
theoretical/experimental critical Reynolds numbers, as well as with results of a DNS of this
problem. Conclusions are discussed in §4.

2. The Orr-Sommerfeld equation

2.1. Formulation of the problem

The stability equation resulting from substitution of small two-dimensional harmonic
perturbations into the incompressible Navier-Stokes equations and linearisation about a
parallel mean state is the well-known Orr-Sommerfeld equation (Lin [13]),

aR (I v - 2a 24" + a4
(t) + (w - )(" - w", = 0 (1)

A form +(y) exp(ia(x - ct)) has been assumed for the disturbance stream function with x
and y denoting respectively the streamwise and normal coordinates and t time. The (real)
wave number associated with the disturbance is denoted by a, the (complex) wave velocity
by c = c, + ici , R is the Reynolds number and primes denote differentiation with respect to
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the variable in the normal direction. The base velocity around which perturbation develop is
denoted by w; if a truly accurate solution of the Orr-Sommerfeld equation is to be expected,
an accurate specification of w and its second derivative appearing in (1) has to be provided.
The boundary conditions following from the asymptotic form of the equation at the
endpoints of the integration domain, 71 = +1 and iq = 0, 7 -- for the channel and boundary
layer flows respectively, are the vanishing of perturbations and their first derivatives,

= =' = 0.
The parallel flow assumption is strictly valid for the channel case but, of course, only a first

approximation for the Blasius boundary layer. In the latter case one proceeds by introducing
non-parallel effects corresponding to the slow boundary layer growth and solving the
resulting stability equation, with the Orr-Sommerfeld solution as a first approximation.
However, in this paper we are concerned with the boundary layer set up by introducing a
spanwise component into the classical Hiemenz stagnation point flow; the resulting flow is
well known to be strictly parallel.

2.2. A spectral collocation solution method for the Orr-Sommerfeld equation

In the influential paper of Orszag [14] the 'exponential convergence' property of spectral
methods was exploited in order to obtain a highly accurate solution of the Orr-Sommerfeld
equation resulting from a temporal linear stability analysis of the plane channel boundary
layer. From [14] onwards the solution method for the linear stability equations, of which the
Orr-Sommerfeld is a specific limit, shifted away from classical finite-difference-shooting
techniques towards pseudospectral methods due to a number of factors.

Firstly, the pseudospectral method exhibits exponential convergence; with a modest
number of nodes one may obtain, when using collocation methods, an accurate solution that
would require at least three times as many finite-difference points as was experienced, for
example, by Macaraeg et al. [15] compared to COSAL [16]. Secondly, when using shooting
from some prescribed value in the free-stream towards the wall, one has to apply successive
orthonormalisation in order to avoid the almost linearly dependent perturbation eigenvectors
becoming actually linearly dependent. In an already expensive finite-difference calculation
this is an additional undesirable requirement. One may apply the method of 'order-
reduction' of van Stijn and van de Vooren [17] in order to prevent the solution vectors from
becoming linearly dependent but, still, the resulting system has to be solved on a very fine
grid for an accurate solution to be obtained [17]. Finally, the iterative approach required by
the shooting technique is based on the provision of a reasonably accurate first estimate,
otherwise it may well diverge; such an estimate may not exist when one attacks a new flow
problem. Even if a starting point for the calculations does exist, having solved for one (R, a)
point, one usually moves incrementally in parameter space using the recently obtained result
as a first estimate for the next calculation. Such an approach, aside from being tedious,
carries with it the potential of missing modes, purely due to the incremental search.

On the contrary, solution of the generalised eigenvalue problem resulting from a spectral
discretisation of (1) yields all the eigenvalues members of both the discrete and the infinite
spectrum without the need of shooting or iteration. The typical for spectral methods
exponential accuracy is exhibited as the number of nodes is increased. On the negative side
of a spectral expansion one might quote its higher cost per typical operation, say matrix
inversion, compared to a finite-difference calculation, since the matrices resulting from
finite-differencing are sparse, as opposed to those of a spectral discretisation which are full.
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It is, however, unlikely that large arrays will be required in this incompressible limit, where
all eigenfunctions are smooth functions, free from the multiple critical layers typical in
compressible flow stability calculations.

Tshebishev polynomials have invariably been considered as basis functions for the
expansion of the rapidly oscillating eigenmodes, and will also be used in this part of this
work. However, instead of evaluating derivatives using the standard recurrence relations of
Tshebishev polynomials, the Tshebishev derivative matrices will be employed, with appro-
priate stretching incorporated. The reader is referred to Gottlieb et al. [18], Canuto et al.
[23], Zang [19] and Boyd [20] for details on the fundamentals of the method. This
(collocation) approach adopted may be seen as being conceptually simpler than the standard
method of Orszag [14] in that only the physical space solution is involved. The fundamental
basis functions being the same, however, namely Tshebishev polynomials, should result in
comparable accuracy for both spectral approaches.

In the case of a Blasius-type boundary layer flow, the calculation domain has to be
mapped onto the standard Tshebishev domain through some mapping

- = (X) ,

x being the standard collocation points and the derivative matrices Dj(, ) have to be redefined
to incorporate the stretching transformation as

(2)

= d 2(X+ D xl(x) (3)(2) 2 (2)(X)+ d 2x (3X
k,j ®( Dkj x 2 k,j d

(B) =d j dx( dx ) +3) xk,jtn )= )'~ D( )(x) 3 D x ) , (4)

(4).. dX44)X d2x )23X

(d 2X 2 dx dx( 2) d4 x
+ 3 y( D (x)+ 4 y-T--D(x) d 1 (x) (5)

Derivatives of the interpolating polynomials are then calculated in the standard way with
i(j) replaced by i. The generalised eigenvalue problem

= c3), (6)

results, where the entries of si and A, a and bj respectively, are given by

i - 2a2 2 + a 4 - iaRwBj( ) + ia Rw + iR(D ), i =j

a = IJd(4 - 2a 2 - iRwfD2, d 1j

and
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r-iaRB2 + i 3R, i=j

-iaRDbj, i j

as dictated by the minimisation of the residuals, while a,j aj,, aN_j, aNj and b0 , b j,
bNlJ i, bN j have to be reserved for the imposition of the boundary conditions associated
with the problem. Equation (6) may then be solved using the QZ algorithm (Wilkinson
[21]), as implemented in standard libraries (NAG [22]), to obtain the complex eigenvalues c
and eigenvectors .

2.3. Validation Results

2.3.1. Plane Channelflow
Two test cases were considered: The first was the classical example of Orszag [14], while the
second was taken from Canuto et al. [23], p. 21. In the first case a = 1.0 and the length scale
in (1) is taken to be half the channel height. The Reynolds number based on this length is
R = 10 000. The eigenvalue spectrum of this problem has been grouped and related to that of
Blasius flow by Mack [24]. The second case corresponds to a = 1.0, and R = 7500 and the
unstable mode quoted by [23] is

0.24989154 + 0.00223497i.

We used 64 collocation points along the height of the channel and our results for the first
test case, as well as those of References [24] and [14] are presented in Table 1. Alongside the
unstable mode, the other members of the A- as well as the least stable modes of the P- and
S- families are recovered. Our results for the unstable mode as well as some of the least
stable ones for the second test case are presented in Table 2.

In Table 1 we note the agreement, to within at least one part in 10 6 , between established
results and our calculations, for the most interesting, from a stability analysis viewpoint,
marginally stable modes, while the agreement is still acceptable for those which are stronger
damped. For the second test case, in Table 2, the power of the method to resolve almost
linearly dependent modes, such as the mode pairs (2,3), (5,6) and (7,8) is demonstrated. It
is such pairs of modes which dictate the need for successive orthonormalisation if a shooting
procedure is employed. The role of round-off error of the specific machine used for the
computations has been pointed out in Orszag [14] and we believe that the small discrepancy
observed in both cases could be attributed to this case. In Fig. 1 the spatial structure of the
unstable eigenfunction pertinent to the second case is presented.'

2.3.2. The Blasius Boundary Layer
In the case of this boundary layer, the length scale of (1) is the Blasius viscous length
L = vx/U0 with v the kinematic viscosity, x a dimensional 0(1) length and U0 the
free-stream velocity. The Reynolds number appearing in (1) is based on L and may be
linked to the displacement thickness Reynolds number R, by

R,. = OR ,

if use is made of the relationship 5* =/3L, between L and the displacement thickness * of
the Blasius layer, with = 1.7207876573.
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Table 1. Eigenvalues of antisymmetric disturbances in plane Poiseuille flow grouped following [14] at a = 1.0,
R = 10 000.

Ref 14 Ref 18 Present Results
Mode cr, c ci c c C

P1
P2
P3
P4
P5
P6
P7
P8
P9
P10

0.96464
0.93635
0.90608
0.87976
0.85145
0.82314
0.79482
0.76649
0.73812
0.70887

Al 0.23753
A2 0.19006
A3 0.34911
A4 0.36850
A5 0.47490
A6 0.51292
A7 0.58721
A8 0.63610
A9 0.68286

S1 0.67759
S2 0.67451
S3 0.67321
S4 0.67232
S5 0.67159
S6 0.67097
S7 0.67043
S8 0.66997
S9 0.66957
S10 0.66923
S11l 0.66894
S12 0.66868
S13 0.66846

-0.03519
-0.06325
-0.09131
-0.11937
-0.14743
-0.17548
-0.20353
-0.23159
-0.25965
-0.28769

0.00374
-0.18282
-0.12450
-0.23382
-0.20873
-0.28663
-0.26716
-0.32519
-0.30761

0.96463092
0.93635178
0.90805633
0.87975570
0.8514494
0.8231370
0.794818
0.76649
0.73812
0.70887

0.23752649
0.1900592
0.34910682
0.36850
0.474901
0.51292
0.58721

-0.03516728
-0.06325157
-0.09131286
-0.11937073
-0.1474256
-0.1754781
-0.203529
-0.23159
-0.25969
-0.28765

0.00373967
-0.1828219
-0.12450198
-0.23882
-0.208731
-0.28663
-0.26716

-0.34373
-0.38983
-0.43580
-0.48326
-0.53241
-0.58327
-0.63588
-0.69025
-0.74642
-0.80439
-0.86418
-0.92582
-0.98932

0.9646307826
0.9363517761
0.9080562591
0.8797551989
0.8514521121
0.8231418132
0.7947925329
0.7663827538
0.7384144067
0.7089715600

0.2375269234
0.1900530904
0.3490948677
0.3684933483
0.4749134182
0.5128427147
0.5873295068
0.6362447738
0.6819252967

0.6781150102
0.6745135784
0.6731954813
0.6723222732
0.6715940833
0.6709668040
0.6704297661
0.6699587838
0.6695707440
0.6692276597
0.6689322590
0.6686918139
0.6684769988

-0.0351674238
-0.0632515698
-0.0913129895
-0.1193702593
-0.1474240869
-0.1754876077
-0.2035503536
-0.2314688563
-0.2596525847
-0.2883657813

0.0037396179
-0.1828220039
-0.1245007142
-0.2388384640
-0.2086595296
-0.2866524457
-0.2672346830
-0.3255555033
-0.3067262470

-0.3436473011
-0.3898782730
-0.4357935786
-0.4832528233
-0.5324047207
-0.5832706093
-0.6358770132
-0.6902518272
-0.7464151978
-0.8043854236
-0.8641786575
-0.9258131384
-0.9893646836

A number of test cases have been considered for this boundary layer which, compared to
that in a channel, has the additional complication of an unbounded integration domain,
strictly y E [0, oo]. Domain truncation using some mapping has to be applied and there has
been in the literature some discussion about the optimal choices of the mapping, stemming
from the proper imposition of the boundary conditions at infinity [23].

As was already mentioned, the accuracy of any stability calculation depends on an
accurate prescription in (1) of the base profile w(y) and its second derivative. Profiles of the
Falkner-Skan family may be robustly calculated using standard library routines [22] which
yield highly accurate solutions in a matter of CPU-seconds. This solution may then be
interpolated onto the appropriate stretched grid using, say, piecewise cubic Hermite
interpolation which yields the base profile appearing in (1). Alternatively, one may use
spectral methods to obtain the solution of the Falkner-Skan profile directly on the spectral
grid as done, for example, by Streett et al. [25] and Theofilis [26]. If the latter approach is
followed errors potentially introduced by the interpolation procedure are eliminated.

In view of the minimal cost of the shooting approach we opted for this method of
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Table 2. Eigenvalues of plane Poiseuille flow disturbances at a = 1.0, R = 7500.

Mode c, Ci

1 0.249891534448 0.002235013060
2 0.959154248238 -0.040571466088
3 0.959171831608 -0.040599394590
4 0.300561398268 -0.054281886667
5 0.926447153091 -0.072892770171
6 0.926501929760 -0.072965703905
7 0.893715202808 -0.105199143291
8 0.893823802471 -0.105326116085
9 0.860846340656 -0.137491554022

10 0.861150741577 -0.137679740787
11 0.377135723829 -0.139851152897
12 0.450444042683 -0.150075808167
13 0.828754961491 -0.169166564941
14 0.828299105167 -0.170216739178
15 0.209101125598 -0.195833802223
16 0.798136055470 -0.202320307493
17 0.791997969151 -0.206886485219
18 0.756497204304 -0.207884415984
19 0.568994760513 -0.216141492128
20 0.234354853630 -0.216548100114
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Fig. 1. The spatial structure of the streamwise perturbation velocity eigenfunction tu in channel flow at R = 7500,
a = 1. Dashed: 3{i}; Dash-dotted: -2{u}.

calculation of the Blasius profile but, instead of using the derivatives as obtained by the
library solvers, applied (2)-(5) to the (interpolated) base profile. The result was machine
precision agreement between the values for the derivatives yielded by the library subroutine
and application of (2)-(5). As expected, this was found to be an essential requirement for
the success of any subsequent stability calculation.

The classical test case a,. = 0.308, Rs. = 998 of Mack [24] is considered first. In this case
the unstable mode has an eigenvalue [17]
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0.36412129 + 0.00796250i.

We solved this case using 64 and 128 collocation points and two mappings between the
standard collocation points xj and the calculation grid r7j, one algebraic

1 -xj
7j1 =+1

l+s+xj'
(7)

with 1 a length. scale and s = 21/17,, where a,: is the location where the calculation domain for
the base flow is truncated, and one exponential. The results obtained using the exponential
mapping were indeed more sensitive to the choice of length scale I and hence we employed
(7) with = ,. = 50.

Satisfaction of the boundary condition at infinity required the integration domain to be
large enough, this being one of the two most important considerations for an accurate result
to be obtained. The other, of course, was a fine enough Tshebishev grid, in order for the
discrete descriptions of derivatives (2)-(5) to work well. Having taken both these considera-
tions into account with the choices in resolution made above, we were able to obtain the
results of Table 3. The least stable part of the eigenspectrum of the case (R = 580, a = 0.179)
is presented graphically in Fig. 2.

A final validation calculation was performed for the almost incompressible case presented
in Table 1 of Macaraeg et al. [15] with the (scaled on boundary layer thickness) parameters
assuming the values R,. = 2200 and a. = 0.2. The converged result for the unstable mode

Table 3. Discrete eigenvalues of the Blasius boundary layer at a,. = 0.308.

Mode Ref 14 Present results
Cr C Ci

R = 580
1 0.3641 0.0080 0.3641212880 0.0079625034
2 0.2897 -0.2769 0.2897243201 -0.2768738567
3 0.4839 -0.1921 0.4839439094 -0.1920824050
4 0.5572 -0.3653 0.5572212338 -0.3653515279
5 0.6862 -0.3307 0.6862882375 -0.3307860195

R = 1000
1 0.3383 0.0048 0.3382665514 -0.0048409160
2 0.2408 -0.2391 0.2408009022 -0.2391381114
3 0.4155 -0.1425 0.4155502915 -0.1425429880
4 0.4551 -0.3187 0.4550822377 -0.3187692463
5 0.5773 -0.2730 0.5773537158 -0.2731113135

R = 2000
1 0.3089 -0.0166 0.3089195489 -0.0165507607
2 0.1918 -0.1961 0.1917774677 -0.1961128264
3 0.3425 -0.0816 0.3425614237 -0.0816631466
4 0.3553 -0.2648 0.3551064431 -0.2651917636
5 0.4651 -0.2079 0.4663228690 -0.2057860642

R = 5000
1 0.3283 -00.294 0.3284006118 -0.0291462801
2 0.1429 -0.1484 0.1428813040 -0.1483746767
3 0.2172 -0.0456 0.2173307836 -0.0456895940
4 0.2603 -0.2037 0.2649475038 -0.2080391496
5 0.3471 -0.1367 0.3290835917 -0.1292654871
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Fig. 2. The eigenvalue spectrum of Blasius flow at R = 580, a = 0.179. Unstable Mode: 'x', Stable Modes: 'O'.

Table 4. Incompressible Unstable Mode at R = 2200/P3, a = 0.2//3.

Nodes o x 102
i x 10 3

COSAL 1200 5.981375 4.017305
SPECLS 200 5.983575 4.023291
Our calculation 128 5.983654 4.023352

%w + io i obtained by the standard compressible stability analysis codes COSAL [16] and
SPECLS [15] alongside with our calculation is presented in Table 4. It has to be noted that,
while both COSAL and SPECLS purity the mode obtained by the global search, i.e. directly
solve the appropriate eigenvalue problem and subsequently perform an inverse Rayleigh
iteration, our result is that of solution of (6) alone (as a matter of fact the results presented
in SPECLS for the global and local search agree to better than eight decimal places). In this
respect we will not argue about the correctness of any of the results, our objective being to
establish the ability of our solver to capture the interesting modes to within a prescribed
tolerance. This seems to be indeed the case, as demonstrated by the results presented for all
test-cases, a fact building confidence so as to turn our attention to the subject of investigation
next.

3. The generalised Hiemenz boundary layer

3.1. Introduction

In what follows we study the linearly unstable, as well as the marginally stable discrete
modes of the Hiemenz boundary layer by means of a DNS of this flow (Theofilis [11, 12]), as
well as by solving the (non-rationally obtained) Orr-Sommerfeld equation. Some intro-
ductory presentation of the physical problem is in order at this point. For details, the reader
is referred, amongst others, to Hall et al. [7] and Theofilis [11].

In order to solve for the base flow over the leading edge of an infinite swept cylinder, we

o

o

Of Of~~~

of

I-
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assume that this face may be treated as locally flat. The oncoming flow outside the boundary
layer is taken to be a stagnation-point flow (Schlichting [2]). Taking x to be the chordwise-,
y the normal to the attachment line and z the spanwise (along the attachment line)
dimensional coordinates, we firstly build a length scale A2 with the aid of the local strain rate
of the flow S = (dUe/dx)x=o and the viscosity v as A = vS. The Reynolds number R of the
flow 3 is R = WeAlv, We being the spanwise velocity component in the far-field and the
relation R, = 0.404R links the momentum thickness Reynolds number R, to R.
In the absence of any disturbance, the basic flow is taken to be of the form

U = Sxi(y); V= S (y); W=RSAw(y)=W wv(y),

which, if substituted into the Navier-Stokes equations, leads to the system of Ordinary
Differential Equations of the Falkner-Skan family

u+ U' =0, (8)

U"' + (') 2 -_ UU -1 = 0, (9)

v" - uw' = 0, (10)

with boundary conditions

(0)= K; U'(0)= 0; U'() = -1

w(0) = 0; W(o) = 1,

where prime denotes differentiation with respect to the similarity variable 7 = y/A and K is a
non-dimensional parameter used to control suction/blowing in the boundary layer. This
reduced form of the Navier-Stokes equations represents a generalisation of the well-known
Hiemenz [1] flow in that, in addition to the plane stagnation-point flow, it incorporates a
non-zero spanwise velocity component. A straightforward shooting technique is employed to
solve this problem in order to obtain the basic flow velocity profile. The result is in excellent
agreement with the profiles given, for example, by Rosenhead [27] and Schlichting [2].

Compared to the Blasius boundary layer the spanwise velocity profile of the generalised
Hiemenz flow resembles closely that of the (streamwise) Blasius. Significant, from an
engineering viewpoint, quantities such as shape factor and skin friction of the Hiemenz flow
assume the values H = 2.54 and Cf = 0.461/R o, as opposed to H= 2.59 and Cf= 0.664/R o

for Blasius flow. The experimental result for the generalised Hiemenz flow critical momen-
tum thickness Reynolds number, as already mentioned, was given by Poll [4] as R, - 235.

One assumes that the flow field may be decomposed into base flow quantities (taken to be
the generalised Hiemenz flow) and normal modes superimposed upon the base field (see f.e.
Hall et al. [7] and Theofilis [11]), i.e.

u= Sx{ + RE , (11)

v=We{ + u , (12)

w = We{w + *E}, (13)

with E = exp(iaz - iot), which amounts to studying periodic in the z-direction disturbances
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with wavelengths 27r/a. The (non-dimensional) complex frequency w and wave velocity c are
related by to = ac. The objective now becomes solution of (11)-(13) for the perturbation
quantities (7, v, v).

3.2. Direct Numerical Simulations

A brief description of the DNS as employed in Theofilis [12] follows. The numerical
approach adopted is similar to that of Duck [28], Duck and Burggraf [29], Burggraf and
Duck [30] and Theofilis [11] where the reader is referred to for full details.

The unsteady, three-dimensional Navier-Stokes equations expressed using the velocity-
vorticity method of Dennis et al. [31] and non-dimensionalised using the boundary layer
length scale A and the spanwise far-field velocity component We to build scales for lengths,
velocity, vorticity and time, take the form

V2U = -V x ;, (14)

V2 =Ra; + ( V, (15)

with U and the velocity and vorticity vectors respectively, t denoting time and R the
Reynolds number of the flow defined previously.

Finite-differences on a stretched grid have been utilised in the normal to the wall
direction, while the spanwise direction was treated pseudospectrally. The Hiemenz flow
(8)-(10) was subtracted away and the equations were marched in time to solve for the
perturbation flow quantities. The boundary conditions imposed on perturbations were no slip
for the chordwise and spanwise velocity components at the wall and a prespecified forcing
function of space and time for the normal velocity component. Boundary conditions for the
vorticity have been derived using its definition. In the far field, since we expect all
perturbations to decay exponentially, we set all perturbation velocity and vorticity com-
ponents identically equal to zero (and, of course, considered large enough an integration
domain for this condition to be applicable).

For a flow at R = 750, a = 0.3 a typical result for the wall shear, taken from Theofilis [32],
is presented in Fig. 3(a), while the corresponding growth rate is presented in Fig. 3(b). Out
of all instability modes excited at the start of the calculation, as time progresses the mode
associated with each particular wavenumber emerges.4 It is by monitoring the convergence of
the growth rate of such waves that one deduces information regarding the state in which the
flow is found, namely unstable, neutral or stable, as well as quantities such as the frequency
of the instability wave.

3.3. Reduction to the Orr-Sommerfeld equation

It is a routine matter in linear stability analyses to substitute the forms (11)-(13) into the full
Navier-Stokes equations, subtract the base flow terms (in this case the generalised Hiemenz
field, solution of (8)-(10)) and linearise, i.e. neglect quadratic compared to linear in
perturbations terms. This procedure, after elimination of the pressure from the equations (a
choice dictated by the absence of physical boundary conditions on the pressure perturbation)
leads to the following system for the perturbation quantities
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t t

Fig. 3. An instability wave obtained by DNS[32] at R = 750, a = 0.3: a. perturbation wall shear tiy versus time t, b.

growth rate wi versus time t.

{( 2 - v - 2 - 2a - iaRw}v - (g 17u)v = -iaRciu (16)

(2(ta2) + 29) } i7 + ({ -_ 3 + [-2a 2 - iaRw - (V-) 2

+ [a 2 + (ip)] + a 4 i3+ ia 3 RO3+t iaR(p 2WV)

+ a2(!3- ) + ( 2 ))}= =-iaRc ({2 - a2)} (17)

where 9 = d/d7, with 7q = y/A. The solution of the full system (16)-(17) has been obtained

first by Hall et al. [7] and later in Theofilis [11, 12] (where we termed its solution method a

'time-periodic' scheme). We will not, therefore, be concerned with it for the rest of this

work. Instead, we explore the possibility of extracting physically relevant information from a

subset of these equations based on experimental intuition rather than mathematical rigour. It

should be noted that the solution method for the Orr-Sommerfeld equation presented in §2.2

may be applied to solve the system (16)-(17). However, having to deal with two equations

in this case compared to the single Orr-Sommerfeld, and given the cost of the QZ algorithm,

it is expected that solving (16)-(17) will be about an order of magnitude more expensive per

(R, a) node than the solution of the Orr-Sommerfeld equation for the same number of

Tshebishev nodes.
It has been experimentally observed ([4, 6, 7]) that the flow at the attachment line itself is

strictly parallel although immediately off the attachment line, of course, it encounters a

region of strong acceleration in the streamwise direction. It may therefore seem plausible,
from a physical standpoint, to neglect in (16)-(17) all the terms associated with the base flow

in the chordwise and normal to the wall directions, ui and 6 respectively, and thus to keep

only terms related to the (predominant) spanwise direction z, namely the spanwise velocity

component w and its derivatives (which, of course, are related to ui and v through the

generalised Hiemenz flow system (8)-(10)). This simplifies (17) to
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...-...... 1.

- ... 1- .....

-.....

_-- ... --- ...

-.., ... ...........

11 1 - ... .. .. .

-.... 1-1. --

-......... --- -

.........-....... -1-

-...-....... -- _

...... _

-.... .....I........ .

I



Spectral collocation and the Orr-Sommerfeld stability equation

{{ 2 - a 2 + iaRc) { 2 - a2) - iaR{2 v 2 - a 2 ) + iaR( 2)}7 = 0, (18)

which is the Orr-Sommerfeld equation (1). The solution of this equation will be our concern
for the rest of this work. Such a simplification, if yielding physically acceptable results, would
result, as already mentioned, in significant savings in a day-to-day routine engineering
calculation compared to the solution of the full system (16)-(17) or, even more so,
compared to the cost of a DNS of this problem [11].

On the other hand, a study of the eigenvalue spectrum is justified in its own right, since it
potentially contains the information required for identification of the dangerous, from a
stability viewpoint, modes causing transition. We therefore embark upon mapping the region
of interest, where transition initiated by small-amplitude disturbances is known to take place,
employing the DNS outlined in §3.2 and comparing the results for the frequencies of the
unstable modes to those obtained by solution of (18).

3.4. Results

Results for Reynolds numbers in both the stable and unstable flow regimes have been
obtained by DNS and the frequencies (f= 1/T) for the instability waves corresponding to
wavenumber values about the neutral loop are presented in Table 5.5 The inadequacy of the
Orr-Sommerfeld equation to predict the critical for instability Reynolds number is known to
manifest itself at Reynolds numbers near the tip of the (experimental and DNS) neutral loop
R 585. It is also expected, and may be observed in the results of Table 5, that solution of
(18) is likely to distort the physical picture near Branch I.

However, even on a quantitative level, the error in the frequencies predicted by the Direct
Simulation and solution of (18) is well within engineering tolerance and diminishes as Branch
II is approached. Far from lending credibility to the unphysical assumptions under which
(18) was derived, this agreement implies that one need not resort to expensive simulations
alone for the description of the eigenspectrum of frequency of the least stable mode.

A more stringent and physically more interesting test to which results yielded by the model
equation (18) may be subjected is the ability of (18) to deliver the crucial, from an
engineering point of view, result of a critical for the destabilisation of the attachment line
Reynolds number. Using similar assumptions to those we used in the derivation of (18) Poll
[3] quoted a critical momentum thickness Reynolds number R, 270, a value which was
later, experimentally by Poll ([4] and [5]) and theoretically by Hall et al. [7], updated to
R o, - 235. The extent to which the neglect of the streamwise and normal velocity components
destroyed the physical picture was thus established.

Our result for Rcrit will follow from a systematic study of the (R, a) region in which linear
instability is observed to occur. We solved (18) in (R, a) space between R = 525 (a choice
dictated by the subcriticality reported by Hall and Malik [8]) and R = 1000. The critical
Reynolds number value obtained by linear interpolation between the R values where ci

changes sign is presented in Table 6, alongside the respective frequency (obtained by a
similar procedure). This information is also presented alongside the DNS result in Fig. 4. It
may be readily observed that the region considered contains the lowest Reynolds number
where the change of sign in ci occurs, R = 666.81; the value of the critical Reynolds number
predicted by solution of (18) may be estimated by these results as being R 660. The critical
R, calculated using this value is R, 267, in very good agreement with that obtained by Poll
[3], who used similar assumptions. As has already been mentioned, this value has been
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Table 5. Comparison between DNS and OS results for the wave period T = 2ir/ac, of the least stable waves.

R a

600
600
600
600
600
600
600
600

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

700
700
700
700
700
700
700
700

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

800
800
800
800
800
800
800
800

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

900
900
900
900
900
900
900
900

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

1000
1000
1000
1000
1000
1000
1000
1000

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

(C,) DNS

0.358209
0.362000
0.368971
0.375310
0.380939
0.386006
0.390407
0.394287

0.349079
0.353714
0.360768
0.366946
0.372541
0.377520
0.381800
0.385549

0.344468
0.346716
0.353082
0.359965
0.365333
0.370231
0.374450
0.377936

0.337941
0.340759
0.347424
0.353952
0.359047
0.363983
0.368112
0.371491

0.335362
0.338753
0.344289
0.351016
0.356331
0.361601
0.362514
0.366292

(T)DNS

100.23
86.78
75.68
66.96
59.98
54.26
49.52
45.53

102.85
88.82
77.40
68.49
61.33
55.48
50.64
46.56

104.23
90.61
79.09
69.82
62.54
56.57
51.63
47.50

106.24
92.19
80.38
71.01
63.63
57.54
52.52
48.32

107.06
92.74
81.11
71.60
64.12
57.92
53.33
49.01

0.348260
0.357404
0.365556
0.379108
0.379117
0.384653
0.389426
0.393465

0.341231
0.350002
0.357854
0.364827
0.370967
0.376317
0.380904
0.384746

0.333786
0.345800
0.351425
0.356829
0.364413
0.369962
0.372109
0.378758

0.327621
0.340933
0.345001
0.351958
0.358326
0.364645
0.367104
0.370239

0.323071
0.331946
0.340515
0.346607
0.354327
0.358742
0.361726
0.365224

103.10
87.90
76.39
66.29
60.27
54.45
49.64
45.63

105.22
89.76
78.04
68.89
61.59
55.66
50.76
46.66

107.57
90.85
79.46
70.43
62.70
56.61
51.96
47.40

109.59
92.15
80.94
71.41
63.76
57.44
52.66
48.49

111.13
94.64
82.01
72.51
64.48
58.38
53.45
49.15

Table 6. The critical Reynolds number predicted by solution of (18).

a Rcrit cr

0.250 698.05 0.364971
0.275 666.81 0.373526
0.300 666.81 0.373526
0.325 683.97 0.375013
0.350 685.84 0.373882

(Cr) OS (T)os
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0.45

0.4

0.35

0.3

0.25

0.2

0.15

(Rijt)DNS (Rc,ir)os

Fig. 4. The (R, a) region considered: '0': DNS neutral loop;
critical Reynolds numbers obtained by the two approaches.

R
'*': tip of the OS neutral loop; also denoted the

updated in [4, 5] and [7], with consistent results having been obtained in the linear regime by
Spalart [9], Jimenez et al. [10] and Theofilis ([11], [12] and this work) leaving little doubt
that solution of (18) overestimates this physical quantity.

To further substantiate this claim, a set of runs are performed, using the Orr-Sommerfeld
equation (18), at a Reynolds number R = 640, between the critical values yielded by the two
approaches, namely DNS and OS. The result is presented in graphical form in Fig. 5 and it is
immediately to be observed that, on one hand the typical pattern of growth rate dependence
on wavenumber emerges, on the other, all growth rates are negative indicating, in the sign
convention adopted when deriving (18), stable waves. However, it is well known that, as
Reynolds number increases, an increasingly better agreement between the Orr-Sommerfeld
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Fig. 5. Growth rate o,) dependence on wavenumber a at R = 640, as solution of the Orr-Sommerfeld equation (18).
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result and the experimental and numerical simulation results is obtained (see f.e. Arnal
[33]); this point may be supported by the high Reynolds number results of Figure 4 (the
Orr-Sommerfeld results obtained by linear interpolation of growth rates at constant
Reynolds number). It has been experienced, though, that, as Reynolds number increases,
increasingly larger integration times are required before a converged result for the linear
growth rates is obtained when DNS is used [12]; even higher Reynolds number results have,
therefore, not been obtained in the course of the present work.

Turning our attention now to the frequency spectrum yielded by solution of (18), we see
that it may be physically relevant, as demonstrated by the reasonable agreement presented in
Table 5. In what follows we will focus upon the behaviour of the three first discrete modes
predicted by solution of (18). Naturally, the fact that the frequency of the first mode is
reasonably well predicted by (18) does not suggest that all the modes yielded by (18) are
physically relevant. Nevertheless, we present our findings here and leave for a later work a
detailed study of the spectrum of the full problem, based on solution of the system
(16)-(17), as well as a comparison between this spectrum and that of the solution of (18).

The three first modes obtained by mapping the region R E (525, 700) - a E (0.175, 0.35)
are presented in graphical form in Figs. 6 and 7. What both figures suggest is that, while the
frequency of mode 2 is well separated from those of the other two, the frequencies of modes
1 and 3 are very close together, even more so near the critical Reynolds number range where
instability is observed. The fact that the first mode remains only marginally stable for quite a
long span in R before actually becoming unstable, 6 while mode 3 is not strongly damped
either, leaves some room for speculation that in the course of a full Navier-Stokes solution, a
large (nonlinear) excitation of such mode pairs may drive an interaction potentially leading
to the observed subcriticality. Verification of such an argument will, of course, have to take
place in the light of results of the full system (16)-(17) but results obtained in this work may
already hint towards a potential direction for future investigation, namely nonlinear
interaction of marginally stable linear modes. However, we reserve such a discussion for
future work.

U. I3

0.7

0.65

0.6

0.55
Cr

0.5

0.45

0.4

0.35

0.3

n,)c
u6J50s0 550 600 650 700

R
Fig. 6. The first three discrete modes. '0': Mode 1, 'x': Mode 2, '*': Mode 3. Solid: a = 0.175, dashed: a = 0.2,
dash-dotted: a = 0.225, dotted: a = 0.02.
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0.7

0.65
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Cr
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0.45

0.4

0.35

0.3

nos
500 550 600 650 700

R
Fig. 7. The first three discrete modes. 'O': Mode 1, 'x': Mode 2, '*': Mode 3. Solid: a = 0.275, dashed: a =0.3,
dash-dotted: a = 0.325, dotted: a = 0.35.

4. Discussion

Based on the results presented so far we may deduce the following points. First, we obtained
an accurate solution to the Orr-Sommerfeld equation, validated on a number of classical
test-cases. Further, solving the generalised Hiemenz flow, albeit under a non-rational
approximation, yields an interesting result, namely that the frequency eigenspectrum for the
most unstable or marginally stable (linear) modes is reasonably well predicted using the
solution to the Orr-Sommerfeld equation at a fraction of the cost of the solution of the full
system (16)-(17) or a DNS of this flow.

Such a result, of course, is hardly surprising since at a large enough R the spanwise
component of this (parallel) flow dominates and the assumptions leading to (18) become
more plausible. One would have, however, to resort to the solution of the full system is
information regarding Rcrit is to be obtained, as has been demonstrated by a number of
investigations in the past. In any event, the relevance of the linear theory result of Rcrit in
the attachment line is still a subject of investigation.

As a first estimate, however, solution of (18) makes possible, to an engineering accuracy,
the identification of the frequency regime in which the linear first mode lies. If physically
relevant to the full problem, the picture emerging from a close inspection of the eigenmodes
obtained is that there exists a pair of discrete eigenmodes, namely the first and third modes,
having similar frequencies while one of them is only marginally stable. Although speculative
at this stage, it might be that a nonlinear interaction of these modes carries the potential for
destabilisation of a (linearly stable) boundary layer.

Subcriticality in itself, of course, cannot be studied in the framework of linear analyses. A
full nonlinear Direct Numerical Simulation of the generalised Hiemenz flow is currently
under way (Theofilis [32]), in which modes may be excited selectively and, hence, their
potential for destabilisation may be investigated. The solver presented in this work makes it
possible to identify the frequency areas to focus upon in the course of such a nonlinear
calculation in an accurate and inexpensive way.

i - -<? St-. - -- -- -- : i = -
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Notes

1. To be compared with the structure presented in Canuto et al. [23], p. 21, the latter results having been
normalised.

2. In view of the assumption of linear dependence of U on x in what follows A will be defined here as
A = (vL/U,)" 2 , with L an 0(1) length and U, the chordwise velocity component in the free-stream.

3. Customarily denoted by R.
4. The sign convention for the growth rates adopted in [32] was the opposite of that of the present work; a negative

w in [32] actually indicates a growing wave as may be seen in Fig. 3(a).
5. It should be noted that the frequency of the waves presented in Table 5 changes, as is typical in temporal studies,

unlike the laboratory environment or spatial numerical investigations where a wave of fixed frequency is inserted
in the layer and its (spatial) growth rate monitored in space rather than time.

6. As indicated by monitoring the growth rates of the waves whose frequency is presented in Figures 6 and 7.
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